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Statistics of local temperature dissipation in high Rayleigh number convection
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We study the statistics of the local temperature dissipation in high Rayleigh number convection. We find that
its probability distribution deviates from a lognormal, although very low order moments can be approximated
by a lognormal distribution. Instead, the moments satisfy a hierarchy similar to that proposed by She and
Leveque[Phys. Rev. Lett72, 336(1994)] for the local energy dissipation. Moreover, the moments scale with
the separation time. No change in the scaling behavior is observed when the Bolgiano scale is crossed,
indicating that the statistics have the same nature in the buoyancy-driven and the inertia-driven regimes.

PACS numbds): 47.27—i, 05.40—-a

High Rayleigh number convection has been a model systion [13], and the velocity structure functions in a class of
tem for studying turbulence. In thermal convection, the dy-shell modeld14—-16 were all found to satisfy similar hier-
namics is driven by an applied temperature difference acrosarchical relation.
the height of an experimental cell. In this sense, the tempera- In turbulent convection, besides the problem of intermit-
ture field is an active scalar. The flow state is characterizetency there is also the issue of whether and how the charac-
by the geometry of the cell and two dimensionless paramteristics of turbulence are affected by the presence of
eters: the Rayleigh number RargAL%/(v«x) and the buoyancy. The mixing dynamics is expected to be
Prandtl number P+ v/ k, whereL is the height of the cellA driven by buoyancy for length scales>lg, where I
is the applied temperature differenggthe acceleration due = 54/ 34 ng)32] [17] is the Bolgiano scale. Hereand y
to gravity, ande, v, and« are respectively the volume ex- are respectively the average energy and temperature dissipa-
pansion coefficient, the kinematic viscosity, and the thermation rates. For <y, it is expected that the inertial force of
diffusivity of the fluid. When Ra is large enough, the con-the fluid motion drives the mixing and the temperature is
vection becomes turbulent. effectively passive. If buoyancy does affect the characteris-

The velocity field in high Reynolds number Navier- tics of turbulence, one expects that the statistical features of
Stokes turbulence is intermittent and does not have selfthe temperature field would be different in the two regimes
similar statistics. The velocity structure functiodbu(x  of length scales. Recently, one of (€hing has indeed
+1)—u(x)]P) scale as *» whenr is within the inertial range  found that the normalized temperature structure functions
but with exponents;,, deviating fromp/3, the values pre- have different scaling exponents in the buoyancy-driven and
dicted by the 1941 Kolmogorov theofft]. Similarly, the in the inertia-driven regimegl3].
fluctuating temperature field in turbulent convection has |n our present project, we attempt to gain more under-
scale-dependent statistics and is intermittg2it A lot of  standing of the intermittency problem by separating it into
work in turbulence research focuses on understanding thgvo parts: the understanding of the conditional temperature
problem of intermittency: on understanding why simple di-structure functions at fixed values of the locally averaged
mensional arguments of the type presented#l are not temperature dissipation rafé8] and the understanding of
completely correct. the statistics of the local temperature dissipation. This sepa-

Kolmogorov’s refined similarity hypothesi®SH) [3] at-  ration allows us to particularly address the interesting ques-
tributed the intermittency of the velocity field to the spatial tion of whether RSH type ideas would be fruitful, that is,
variations of the energy dissipation by relating the velocitywhether the intermittency of the temperature field can be
differenceu(x+r)—u(x) to the local energy dissipatiog attributed to the spatial variation of the temperature dissipa-
averaged over a ball of radiusfor r within the inertial tion.
range. Kolmogorov further assumed tleatis lognormal and In this Rapid Communication, we report our study on the
obtained explicit results fo&,. However, the lognormal statistics of the local temperature dissipation in high Ray-
model is known to have several shortcomiig$ She and leigh number convection. In particular, we investigate
Leveque proposed a hierarchy for the momentseof5]  whether the statistics can also be characterized by a hierar-
which leads to good agreement with experiments. With RSHehical structure, and whether there is a change of behavior
this leads to a similar relation for the velocity structure func-when the Bolgiano scale is crossed.
tions. We use data from the well-documented Chicago experi-

Such hierarchical relation was shown to be naturally satment of low temperature helium ggE9,20 for our analyses.
isfied by log-Poisson statisti¢§,7]. In addition to the local The experimental cell heated from below is cylindrical with
energy dissipation8] and the velocity structure functions a diameter of 20 cm and a height of 40 cm. A mean circu-
[9,10] in Navier-Stokes turbulence, the passive scalar struckating flow is present for Rayleigh numbers larger thaf. 10
ture functions[11] and the local passive scalar dissipation The temperature at the center of the cé&(lt), was measured
[12], the temperature structure functions in turbulent convecas a function of time.
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. ] ] ) FIG. 2. Moments of(x") vs p for r=8 (circles, =32
FIG. 1. Probability density functions of the logarithm of the (squarel 7=512 (diamond$, and 7=1024 (triangles. All times

normalized locally averaged temperature dissipation P4%,) VS 4re in units of the sampling time 1/320 s. It can be seen that the

Y, for =8 (circles, 7=32 (squares 7=128 (diamond$, =  |5gnormal approximatioidashed linesis good only for smalb.
=512 (triangles, and 7= 1024 (starg. All times are in units of the

sampling time= 1/320 s. For comparison, Gaussian distributions
with the same mean and standard deviatidashed lines are
shown for eacthy.

values smaller thary. m_ increases to approximately zero

while the standard deviation, decreases to approximately 1

as 7 approaches.. The PDFs are slightly asymmetric, and

the kurtosis decreases from larger than 10 to around 8 as

increases fromry to 7.. For comparison, we also plot the

)2 Gaussian distributions with the same mean and standard de-
!

We definey, by

1 (t+r JT
XAUE—L a (

The (ud)lat
flected by the value of the kurtosis.
where (uZ) is the mean square velocity fluctuations at the  Although y. is not lognormal, it would be useful to know
center of the cell. We usg,, which can be easily calculated how well the low order moments can be approximated by
using the one-point temperature measurements, to estimag@sumingy , to be Gaussian. Suppo¥e were Gaussian with

the local temperature dissipation, which is the average ofhe samem. and o, the moments ofy,, (x), would be
k|VT|? over a ball of size'. given by

The intermittency of the temperature field manifests itself
as ar-dependence of the probability density functi®DF) p _ L Pamp+a2p?l2
of T,.=T(t+7)—T(t). From thisT dependence, the dissipa- (X=Dognommar= X" ' @
tion and the circulation time scalegy and 7., were identi-  As can be seen from Fig. 2, this approximation is only good
fied [2]. In the present work, we study, for 7 within the  when p is small. The maximum value gb such that the
interval (74, 7c), which corresponds to the inertial range. We approximation is good increases asncreases. In order for
focus on the data set taken at RZ.3X 1010, which has the Eq. (4) to be a good approximation for the whole range of
longest scaling range both in the temperature frequencyr,, r.), p has to be smaller than 0.2. Such a small value of
power spectrunj21] and in the generalized extended self- p renders the lognormal approximation not useful for de-
similarity plots of the temperature structure functiqdS].  scribing the dependence of the momef)8) on 7 (see be-
The sampling frequency is 320 Hz and the number of datq;ow)_
points is 614 40074 and 7. are approximately 0.02 and 5.5 Next, we address the question whether the moments of
s, which are respectively 6 and 1750 sampling time intervalsgatisfy the following hierarchy:

We shall first investigate the probability distribution of

(1)  viation for eachr in Fig. 1. All the PDFs deviate from a
Gaussian but the difference is smaller for largeras re-

Iny,. Define p+2q p+ay 18}
<XT >: <XT > X (q]oo)l_B)q( (5)
X: P T .
Y.=In| —]|, (2 4 4
X
where
where
o 08T
1 f7total K ((91—)2 S—q’ )E m < p> (6)
= — | —| dt 3 p—e Xz
X TtotalJ O <U§> at ®

B, is a parameter between 0 and 1 f@r0, andA, , are
and 74 is the total measurement time. In Fig. 1, we showconstants independent ef Equation(5) is a generalization
the PDFs ofY ., P(Y,), for various values ofr. It can be of the She-Leveque hierarclj§] to any value ofg not nec-
seen thaP(Y,) depends orr. The mearmm, for all the PDFs  essarily equal to 1. When long data sets are not available, as
is negative, implying that it is more probable fgr to have in the present work, one can check E§) without the need
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FIG. 3. |n(<Xr!1+2q><sz+q>)/(<Xpl+q><sz+2q>) VS |n(<Xpl+q><sz>)/ FIG. 5. Scaling exponents qf, as a function ofp. The solid

((Xfl)()(?2+q)) for p;=0.1, p,=0.8, q=0.1 (circles; p;=0.3, p, line is Eq.(8), using the fitted values of=0.66 andg,=0.31.

=0.6, q=0.1 (square =0.7, p,=0.2, q=0.1 (triangles; . .
—01 qp2:0_5( qq:oi F;ldiamongg' p1=g-3 p2(=0.6g qioez wherec and\ are two parameters. It is straightforward to see

(star$; andp=0.7, p,=0.2 q=0.4 (crossek The data points can that (x.)= (1) f o*"*'x,(t)dt is approximately equal to
be well fitted by straight line¢solid line9 indicating that the mo-  x for 7 small compared t@o4 - Thus,{x,) is independent
ments satisfy the hierarchical relati¢B). of r and x,=0. Hence, Eq(7) becomes

to calculate very high order moments by using a small value B 1—,85
of g. We plot (x> (x22 /(x5 W(x 52 "*)) versus we=M1=g TP

(O DHOEN X (X)) on a log-log scale by vary-

ing 7 and keepingp,, p,, andq fixed. If Eq. (5) is valid, a

straight line with sIoquf( should be observed. Such plots (@) 7 9)

for different values op, andp, are shown in Fig. 3. Straight T '

lines with the same slope are indeed observed for gathe  Tpys the parameter is the negative of the scaling exponent

mter_cepts are close to zero, |nd|cat|ng that the constapts of X(Tl,oo)_ We plot ((XT2q>(XE+q))/(<X5+q><XE+2q>) ver-

are independent gb. The value ofg, is found to be 0.31 PGy /o p By Pt 1 2

+0.02. sus (x5, YOEN((XZ (x5, ™) on a log-log scale by
Finally, we study the dependence(of®) on 7. As shown  varyingp and keepingr;, 7, andq fixed. Straight lines with

in Fig. 4, (x") scales as*» for = within the range ¢4,7;).  SlopeBy are again observed, and the intercepts -areq(1

It is also clearly shown that the lognormal assumptigh ~ —/8})In(7/7,). The estimated value of is 0.66-0.02. In

(dotted line$ fails to capture ther dependence except for Fig. 5, we show the exponenjs, and compare them with

very smallp. Using Eq.(5), the functional dependence of the EQ. (8) using the estimated values gf, and\ (solid line).

scaling exponentg., on p is obtained as Good agreement can be seen, further verifying (&).
It was shown22] thatlz can be written as

()

Equation(8) implies that

—co(1—BP)—
Hp=C(1=BR) =P, @) e .
1.5 — 07! I ' e ’ (Ra PDlM’ ( )

| ; i i where the Nusselt numbéNu) is the heat flux normalized

1or } 3 } by that when there was only conduction. A time scale corre-

I 1 | | sponding td g can be naturally defined ag= r.lg/L and is
R0 RN Q\g i - easily evaluated using the measured values of Nu, Ra, and
£ | | "@"@\Q,‘O‘l@ Pr. For Ra=7.3x 10, 753~60 sampling time intervals. In
= 00F I }E;EJB«@) gooo - Fig. 4, we see that the scaling behavior gf) extends over

et T e i approximately the whole range of{,7.) with no observ-
05 & 3 - able change wheng is crossed. This suggests that the sta-
s :, 5 I, : tistics of y, have the same nature in the two regimes of
10 L— R - j scales. This further suggests that the statisticg, diave the
o 2 4 6 8 10 12 same nature no matter whether the temperature field acts as

an active scalar or is effectively passive.

FIG. 4. Scaling behavior ofx?) as a function ofr. The three Finally, 't_ IS |ntere§tlng to see what valuesmi, ?‘ndﬁx_
time scalesry, 75, and r, are indicated by dashed lines=0.1  Would be given by simple plhmen_omenology and dimensional
(circles, p=0.4 (squarel andp=1.2 (diamond. The solid lines ~ &rguments. Dimensionally ' is a temperature variance
are power-law fits, while the dotted lines are the lognormal approxidivided by a time. The maximum temperature variancs3s
mation, which is good only fop=0.1. So, we takeX(Tl"x)~A2/tT, wheret ~r/u, is the eddy turn-
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over time at the scale=(uZ)*?z. In the inertia-driven re- is lognormal. Instead, the moments satisfy a hierarchical
gime, one expects, to be given by the average energy dis- structure of the form similar to that proposed by She and
sipation rate:ur~(r:)1’3, which givesX(Tl"")~r‘2/3. Thus Leveque for the local energy dissipation. Moreover?)
A =2/3, which is very close to what we have found. On thescale asr*r for 74<7<7., and the scaling exponenis,
other hand, when buoyancy is important, one would expednave the functional dependen@ implied by the hierarchi-
u, to be related to the buoyancy terof/r ~(ag)T,, where  cal structure. No change in the scaling behavior is observed
T, is the temperature difference across the scabind is  when the scaley is crossed, indicating that the statistics of
expected to be related to the average temperature dissipatign have the same nature in the inertia- and buoyancy-driven
rate:Trzur/r~; In this case,)((Tl’w)~r‘2’5 and\ would be regimes. This is somewhat surprising, as simple phenom-
2/5, which is not observed. Instead, we have just seemthat €nology would suggest different scaling behavior in the two
is close to 2/3 for the whole range{,7.). The value ofc regimes. This observation also implies that the change in the
can be interpreted as the co-dimension of the most dissip&caling exponents of the normalized temperature structure
tive structures. For the passive scalar, numerical simulationfinctions observed in Ref13] is solely the result of a
suggest that such structures are sheetlike, gigind.. Using  change in the conditional temperature structure functions at
A=2/3 andc=1, u,=0 givesp, =1/3, which is again close fixed values ofy,. Such a change is indeed found, and the
to what we have found. results are reported elsewhées].

In summary, we have carried out a systematic study on
the statistics of the local temperature dissipation, estimated _ )
by x., in turbulent convection. We have found that the PDF_ 1 1iS work is supported by a grant from the Research
of x. depends orr and is not lognormal, even though very Grants Coqncn of the Hong Kong Special Administrative
low order moments can be approximated by assuming that Region, ChinaRGC Ref. No. CUHK 4119/98p
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