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Statistics of local temperature dissipation in high Rayleigh number convection

Emily S. C. Ching and C. Y. Kwok
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong

~Received 26 August 2000!

We study the statistics of the local temperature dissipation in high Rayleigh number convection. We find that
its probability distribution deviates from a lognormal, although very low order moments can be approximated
by a lognormal distribution. Instead, the moments satisfy a hierarchy similar to that proposed by She and
Leveque@Phys. Rev. Lett.72, 336~1994!# for the local energy dissipation. Moreover, the moments scale with
the separation time. No change in the scaling behavior is observed when the Bolgiano scale is crossed,
indicating that the statistics have the same nature in the buoyancy-driven and the inertia-driven regimes.

PACS number~s!: 47.27.2i, 05.40.2a
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High Rayleigh number convection has been a model s
tem for studying turbulence. In thermal convection, the d
namics is driven by an applied temperature difference ac
the height of an experimental cell. In this sense, the temp
ture field is an active scalar. The flow state is characteri
by the geometry of the cell and two dimensionless para
eters: the Rayleigh number Ra5agDL3/(nk) and the
Prandtl number Pr5n/k, whereL is the height of the cell,D
is the applied temperature difference,g the acceleration due
to gravity, anda, n, andk are respectively the volume ex
pansion coefficient, the kinematic viscosity, and the therm
diffusivity of the fluid. When Ra is large enough, the co
vection becomes turbulent.

The velocity field in high Reynolds number Navie
Stokes turbulence is intermittent and does not have s
similar statistics. The velocity structure functions^@u(x
1r )2u(x)#p& scale asr jp whenr is within the inertial range
but with exponentsjp deviating fromp/3, the values pre-
dicted by the 1941 Kolmogorov theory@1#. Similarly, the
fluctuating temperature field in turbulent convection h
scale-dependent statistics and is intermittent@2#. A lot of
work in turbulence research focuses on understanding
problem of intermittency: on understanding why simple
mensional arguments of the type presented inK41 are not
completely correct.

Kolmogorov’s refined similarity hypothesis~RSH! @3# at-
tributed the intermittency of the velocity field to the spat
variations of the energy dissipation by relating the veloc
differenceu(x1r )2u(x) to the local energy dissipatione r
averaged over a ball of radiusr for r within the inertial
range. Kolmogorov further assumed thate r is lognormal and
obtained explicit results forjp . However, the lognorma
model is known to have several shortcomings@4#. She and
Leveque proposed a hierarchy for the moments ofe r @5#
which leads to good agreement with experiments. With RS
this leads to a similar relation for the velocity structure fun
tions.

Such hierarchical relation was shown to be naturally s
isfied by log-Poisson statistics@6,7#. In addition to the local
energy dissipation@8# and the velocity structure function
@9,10# in Navier-Stokes turbulence, the passive scalar str
ture functions@11# and the local passive scalar dissipati
@12#, the temperature structure functions in turbulent conv
PRE 621063-651X/2000/62~6!/7587~4!/$15.00
s-
-
ss
a-
d
-

l

lf-

s

he
-

l

,
-

t-

c-

-

tion @13#, and the velocity structure functions in a class
shell models@14–16# were all found to satisfy similar hier
archical relation.

In turbulent convection, besides the problem of interm
tency there is also the issue of whether and how the cha
teristics of turbulence are affected by the presence
buoyancy. The mixing dynamics is expected to
driven by buoyancy for length scalesr . l B , where l B

[ē5/4/@ x̄3/4(ag)3/2# @17# is the Bolgiano scale. Hereē andx̄
are respectively the average energy and temperature dis
tion rates. Forr , l B , it is expected that the inertial force o
the fluid motion drives the mixing and the temperature
effectively passive. If buoyancy does affect the characte
tics of turbulence, one expects that the statistical feature
the temperature field would be different in the two regim
of length scales. Recently, one of us~Ching! has indeed
found that the normalized temperature structure functi
have different scaling exponents in the buoyancy-driven
in the inertia-driven regimes@13#.

In our present project, we attempt to gain more und
standing of the intermittency problem by separating it in
two parts: the understanding of the conditional temperat
structure functions at fixed values of the locally averag
temperature dissipation rate@18# and the understanding o
the statistics of the local temperature dissipation. This se
ration allows us to particularly address the interesting qu
tion of whether RSH type ideas would be fruitful, that i
whether the intermittency of the temperature field can
attributed to the spatial variation of the temperature dissi
tion.

In this Rapid Communication, we report our study on t
statistics of the local temperature dissipation in high R
leigh number convection. In particular, we investiga
whether the statistics can also be characterized by a hie
chical structure, and whether there is a change of beha
when the Bolgiano scale is crossed.

We use data from the well-documented Chicago exp
ment of low temperature helium gas@19,20# for our analyses.
The experimental cell heated from below is cylindrical wi
a diameter of 20 cm and a height of 40 cm. A mean circ
lating flow is present for Rayleigh numbers larger than 18.
The temperature at the center of the cell,T(t), was measured
as a function of timet.
R7587 ©2000 The American Physical Society
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We definext by

xt~ t ![
1

tEt

t1t k

^uc
2&

S ]T

]t8
D 2

dt8, ~1!

where ^uc
2& is the mean square velocity fluctuations at t

center of the cell. We usext , which can be easily calculate
using the one-point temperature measurements, to esti
the local temperature dissipation, which is the average
ku¹Tu2 over a ball of sizer.

The intermittency of the temperature field manifests its
as at-dependence of the probability density function~PDF!
of Tt[T(t1t)2T(t). From thist dependence, the dissipa
tion and the circulation time scales,td andtc , were identi-
fied @2#. In the present work, we studyxt for t within the
interval (td ,tc), which corresponds to the inertial range. W
focus on the data set taken at Ra57.331010, which has the
longest scaling range both in the temperature freque
power spectrum@21# and in the generalized extended se
similarity plots of the temperature structure functions@13#.
The sampling frequency is 320 Hz and the number of d
points is 614 400.td andtc are approximately 0.02 and 5.
s, which are respectively 6 and 1750 sampling time interv

We shall first investigate the probability distribution
lnxt . Define

Yt[ lnS xt

x D , ~2!

where

x5
1

t total
E

0

t total k

^uc
2&

S ]T

]t D
2

dt ~3!

andt total is the total measurement time. In Fig. 1, we sho
the PDFs ofYt , P(Yt), for various values oft. It can be
seen thatP(Yt) depends ont. The meanmt for all the PDFs
is negative, implying that it is more probable forxt to have

FIG. 1. Probability density functions of the logarithm of th
normalized locally averaged temperature dissipation rateP(Yt) vs
Yt for t58 ~circles!, t532 ~squares!, t5128 ~diamonds!, t
5512 ~triangles!, andt51024~stars!. All times are in units of the
sampling time5 1/320 s. For comparison, Gaussian distributio
with the same mean and standard deviation~dashed lines! are
shown for eacht.
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values smaller thanx. mt increases to approximately zer
while the standard deviationst decreases to approximately
ast approachestc . The PDFs are slightly asymmetric, an
the kurtosis decreases from larger than 10 to around 3t
increases fromtd to tc . For comparison, we also plot th
Gaussian distributions with the same mean and standard
viation for eacht in Fig. 1. All the PDFs deviate from a
Gaussian but the difference is smaller for largert, as re-
flected by the value of the kurtosis.

Althoughxt is not lognormal, it would be useful to know
how well the low order moments can be approximated
assumingYt to be Gaussian. SupposeYt were Gaussian with
the samemt and st , the moments ofxt , ^xt

p&, would be
given by

^xt
p& lognormal5xpemtp1st

2p2/2. ~4!

As can be seen from Fig. 2, this approximation is only go
when p is small. The maximum value ofp such that the
approximation is good increases ast increases. In order for
Eq. ~4! to be a good approximation for the whole range
(td ,tc), p has to be smaller than 0.2. Such a small value
p renders the lognormal approximation not useful for d
scribing the dependence of the moments^xt

p& on t ~see be-
low!.

Next, we address the question whether the moments oxt
satisfy the following hierarchy:

^xt
p12q&

^xt
p1q&

5Ap,qF ^xt
p1q&

^xt
p&

Gbx
q

xt
(q,`)12bx

q
, ~5!

where

xt
(q,`)[F lim

p→`

^xt
p1q&

^xt
p&

G . ~6!

bx is a parameter between 0 and 1 forp>0, andAp,q are
constants independent oft. Equation~5! is a generalization
of the She-Leveque hierarchy@5# to any value ofq not nec-
essarily equal to 1. When long data sets are not available
in the present work, one can check Eq.~5! without the need

FIG. 2. Moments of ^xt
p& vs p for t58 ~circles!, t532

~squares!, t5512 ~diamonds!, and t51024 ~triangles!. All times
are in units of the sampling time5 1/320 s. It can be seen that th
lognormal approximation~dashed lines! is good only for smallp.
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to calculate very high order moments by using a small va
of q. We plot (̂ xt

p112q
&^xt

p21q
&)/(^xt

p11q
&^xt

p212q
&) versus

(^xt
p11q

&^xt
p2&)/(^xt

p1&^xt
p21q

&) on a log-log scale by vary
ing t and keepingp1 , p2, andq fixed. If Eq. ~5! is valid, a
straight line with slopebx

q should be observed. Such plo
for different values ofp1 andp2 are shown in Fig. 3. Straigh
lines with the same slope are indeed observed for eachq. The
intercepts are close to zero, indicating that the constantsAp,q
are independent ofp. The value ofbx is found to be 0.31
60.02.

Finally, we study the dependence of^xt
p& on t. As shown

in Fig. 4, ^xt
p& scales astmp for t within the range (td ,tc).

It is also clearly shown that the lognormal assumption~4!
~dotted lines! fails to capture thet dependence except fo
very smallp. Using Eq.~5!, the functional dependence of th
scaling exponentsmp on p is obtained as

mp5c~12bx
p!2lp, ~7!

FIG. 3. ln(̂ xt
p112q

&^xt
p21q

&)/(^xt
p11q

&^xt
p212q

&) vs ln(̂ xt
p11q

&^xt
p2&)/

(^xt
p1&^xt

p21q
&) for p150.1, p250.8, q50.1 ~circles!; p150.3, p2

50.6, q50.1 ~squares!; p150.7, p250.2, q50.1 ~triangles!; p1

50.1, p250.5, q50.4 ~diamonds!; p150.3, p250.6, q50.4
~stars!; and p50.7, p250.2 q50.4 ~crosses!. The data points can
be well fitted by straight lines~solid lines! indicating that the mo-
ments satisfy the hierarchical relation~5!.

FIG. 4. Scaling behavior of̂xt
p& as a function oft. The three

time scalestd , tB , and tc are indicated by dashed lines.p50.1
~circles!, p50.4 ~squares!, andp51.2 ~diamonds!. The solid lines
are power-law fits, while the dotted lines are the lognormal appro
mation, which is good only forp50.1.
e

wherec andl are two parameters. It is straightforward to s
that ^xt&5(1/t total)*0

t totalxt(t)dt is approximately equal to
x for t small compared tot total . Thus,^xt& is independent
of t andm150. Hence, Eq.~7! becomes

mp5lF12bx
p

12bx
2pG . ~8!

Equation~8! implies that

xt
(q,`);t2lq. ~9!

Thus, the parameterl is the negative of the scaling expone
of xt

(1,̀ ) . We plot (̂ xt1

p12q&^xt2

p1q&)/(^xt1

p1q&^xt2

p12q&) ver-

sus (̂ xt1

p1q&^xt2

p &)/(^xt1

p &^xt2

p1q&) on a log-log scale by

varyingp and keepingt1 , t2, andq fixed. Straight lines with
slopebx

q are again observed, and the intercepts are2lq(1
2bx

q)ln(t1 /t2). The estimated value ofl is 0.6660.02. In
Fig. 5, we show the exponentsmp and compare them with
Eq. ~8! using the estimated values ofbx andl ~solid line!.
Good agreement can be seen, further verifying Eq.~5!.

It was shown@22# that l B can be written as

l B5
Nu1/2L

~Ra Pr!1/4
, ~10!

where the Nusselt number~Nu! is the heat flux normalized
by that when there was only conduction. A time scale cor
sponding tol B can be naturally defined astB5tcl B /L and is
easily evaluated using the measured values of Nu, Ra,
Pr. For Ra57.331010, tB'60 sampling time intervals. In
Fig. 4, we see that the scaling behavior of^xt

p& extends over
approximately the whole range of (td ,tc) with no observ-
able change whentB is crossed. This suggests that the s
tistics of xt have the same nature in the two regimes
scales. This further suggests that the statistics ofxt have the
same nature no matter whether the temperature field ac
an active scalar or is effectively passive.

Finally, it is interesting to see what values ofc, l, andbx

would be given by simple phenomenology and dimensio
arguments. Dimensionally,xt

(1,̀ ) is a temperature varianc
divided by a time. The maximum temperature variance isD2.
So, we takext

(1,̀ );D2/tt , wherett;r /ur is the eddy turn-
i-

FIG. 5. Scaling exponents ofmp as a function ofp. The solid
line is Eq.~8!, using the fitted values ofl50.66 andbx50.31.
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over time at the scaler 5^uc
2&1/2t. In the inertia-driven re-

gime, one expectsur to be given by the average energy d
sipation rate:ur;(r ē)1/3, which givesxt

(1,̀ );t22/3. Thus
l52/3, which is very close to what we have found. On t
other hand, when buoyancy is important, one would exp
ur to be related to the buoyancy term:ur

2/r;(ag)Tr , where
Tr is the temperature difference across the scaler and is
expected to be related to the average temperature dissip
rate:Tr

2ur /r;x̄. In this case,xt
(1,̀ );t22/5 andl would be

2/5, which is not observed. Instead, we have just seen thl
is close to 2/3 for the whole range (td ,tc). The value ofc
can be interpreted as the co-dimension of the most diss
tive structures. For the passive scalar, numerical simulat
suggest that such structures are sheetlike, givingc51. Using
l52/3 andc51, m150 givesbx51/3, which is again close
to what we have found.

In summary, we have carried out a systematic study
the statistics of the local temperature dissipation, estima
by xt , in turbulent convection. We have found that the PD
of xt depends ont and is not lognormal, even though ve
low order moments can be approximated by assuming th
v
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is lognormal. Instead, the moments satisfy a hierarch
structure of the form similar to that proposed by She a
Leveque for the local energy dissipation. Moreover,^xt

p&
scale astmp for td,t,tc , and the scaling exponentsmp

have the functional dependence~8! implied by the hierarchi-
cal structure. No change in the scaling behavior is obser
when the scaletB is crossed, indicating that the statistics
xt have the same nature in the inertia- and buoyancy-dri
regimes. This is somewhat surprising, as simple phen
enology would suggest different scaling behavior in the t
regimes. This observation also implies that the change in
scaling exponents of the normalized temperature struc
functions observed in Ref.@13# is solely the result of a
change in the conditional temperature structure function
fixed values ofxt . Such a change is indeed found, and t
results are reported elsewhere@18#.

This work is supported by a grant from the Resea
Grants Council of the Hong Kong Special Administrativ
Region, China~RGC Ref. No. CUHK 4119/98P!.
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